Source code for gwpopulation_pipe.parser

import bilby
import gwpopulation
import wcosmo
import numpy as np
from bilby_pipe.bilbyargparser import BilbyArgParser
from bilby_pipe.parser import StoreBoolean
from bilby_pipe.utils import noneint, nonestr


[docs] def create_parser(): from ._version import __version__ parser = BilbyArgParser( usage=__doc__, ignore_unknown_config_file_keys=False, allow_abbrev=False ) parser.add("ini", type=str, is_config_file=True, help="Configuration ini file") parser.add("-v", "--verbose", action="store_true", help="Verbose output") parser.add( "--version", action="version", version="%(prog)s={version}\nbilby={bilby_version}\ngwpopulation={gwpopulation_version}".format( version=__version__, bilby_version=bilby.__version__, gwpopulation_version=gwpopulation.__version__, ), ) base_parser = parser.add_argument_group( title="Generic arguments", description="Generic arguments" ) base_parser.add_argument( "--run-dir", type=str, default="outdir", help="Output directory for posterior samples", ) base_parser.add_argument( "--log-dir", type=str, default="logs", help="Output directory for writing log files", ) base_parser.add_argument("--label", type=str, default="label", help="Run label") base_parser.add_argument("--user", type=str, help="User name", default=None) base_parser.add_argument( "--vt-file", type=nonestr, default=None, help="File to load VT data from or a glob string matching multiple files to combine.", ) base_parser.add_argument( "--vt-ifar-threshold", type=float, default=1, help="IFAR threshold for resampling injections", ) base_parser.add_argument( "--vt-snr-threshold", type=float, default=11, help="IFAR threshold for resampling injections. " "This is only used for O1/O2 injections", ) base_parser.add_argument( "--vt-function", type=str, default="injection_resampling_vt", help="Function to generate selection function from.", ) base_parser.add_argument( "--prior-file", type=str, help="Prior file containing priors for all considered parameters", ) base_parser.add_argument( "--request-gpu", default=0, help="Whether to request a GPU for the relevant jobs.", ) base_parser.add_argument( "--require-gpus", default='DeviceName=="GeForce GTX 1050 Ti"', type=str, help="The GPU requirements to pass for HTCondor.", ) base_parser.add_argument( "--backend", default="jax", choices=gwpopulation.backend.SUPPORTED_BACKENDS, type=str, help="The backend to use for the analysis, default is jax", ) base_parser.add_argument( "--cosmo", action=StoreBoolean, default=False, help="Whether to fit cosmological parameters.", ) base_parser.add_argument( "--cosmology", type=str, default="Planck15_LAL", help=( "Cosmology to use for the analysis, this should be one of " f"{', '.join(wcosmo.available.keys())}, Planck15_LAL. Some of these are " "fixed pre-defined cosmologies while others are parameterized " "cosmologies. If a parameterized cosmology is used the parameters relevant" " parameters should be included in the prior specification." ), ) base_parser.add_argument( "--container", type=nonestr, default=None, help="The path to the singularity image to use", ) base_parser.add_argument( "--conda-env", type=nonestr, default=None, help="The conda environment to use" ) base_parser.add_argument( "--pool", type=str, choices=["osg", "local"], default="osg", help="Which HTCondor pool to submit to, if osg, the local pool is also allowed", ) model_parser = parser.add_argument_group( title="Analysis models", description="Analysis models" ) model_parser.add_argument( "--all-models", type=str, help="All models to use, formatted as a json string" ) model_parser.add_argument( "--source-files", action="append", help=( "Files containing source models to use for user-defined models. " "These files are transferred to the execute node when using the " "HTCondor file transfer mechanism. If the job is being run " "locally the file should be in the users PYTHONPATH." ), ) collection_parser = parser.add_argument_group( title="Data collection arguments", description="Data collection arguments" ) collection_parser.add_argument( "--existing-data-directory", type=str, default="/fail", help="Directory containing existing data", ) collection_parser.add_argument( "--parameters", action="append", help=( "Parameters that are fit with the model. " "These are the parameters that will be extracted from the posterior samples " "and should follow Bilby naming conventions with the exception that all masses " "are assumed to be in the source frame. Here is a list of parameters for which " "prior factors will be properly accounted. " "mass_1: source frame primary mass, mass_2: source frame secondary mass, " "mass_1_detector: detector frame primary mass, mass_2_detector: detector frame secondary mass, " "chirp_mass: source frame chirp mass, chirp_mass_detector: detector frame chirp mass," "mass_ratio: mass ratio, redshift: redshift, luminosity_distance: luminosity distance," "a_1: primary spin magnitude, a_2: secondary spin magnitude, cos_tilt_1: " "cosine primary spin tilt, cos_tilt_2: cosine secondary spin tilt, " "chi_1: aligned primary spin, chi_2: aligned secondary spin." "Any other parameters will be assumed to have a flat prior." "These parameters are also used to set the fiducial prior values. " "No redundancy checks are performed so users should be careful to not " "include unused parameters as that may have unintended consequences." ), ) collection_parser.add_argument( "--ignore", action="append", help="Events to ignore." ) collection_parser.add_argument( "--sample-regex", type=str, help="Pattern to match for sample files" ) collection_parser.add_argument( "--preferred-labels", action="append", help="Run labels to search for in sample files", ) collection_parser.add_argument( "--plot", default=True, action=StoreBoolean, help="Whether to generate diagnostic plots", ) collection_parser.add_argument( "--n-simulations", type=noneint, help="Number of posteriors to simulate" ) collection_parser.add_argument( "--samples-per-posterior", type=int, default=int(1e6), help="Number of samples per posterior. If larger than the number of samples in the shortest posterior dataset, will ignore this input.", ) collection_parser.add_argument( "--collection-seed", type=noneint, help="Seed for the downsampling of the posteriors for each event. For reproducibility.", ) collection_parser.add_argument( "--data-label", default="posteriors", help="Label for data product." ) collection_parser.add_argument( "--distance-prior", default="comoving", type=str, help=( "Distance prior format, e.g., euclidean, comoving. 'euclidean' assumes the distance prior goes " "like D^2. 'comoving' assumes sources are uniformly distributed in the comoving frame using " "the Planck15_LAL cosmology. Can be in the format of a dict with the same keys as the sample-regex" ), ) collection_parser.add_argument( "--mass-prior", default="flat-detector", type=str, help=( "Mass prior used during the initial sampling, must match one of the following options. " "\n 'flat-detector': Flat in detector frame primary and secondary masses. " "\n 'chirp-mass': Flat in detector frame chirp mass and mass ratio. " "\n 'flat-detector-components': Flat in detector frame primary and secondary masses. " "This is the default for LVK samples and the same as the deprecated 'flat-detector' option. " "\n 'flat-source-components': Flat in source frame primary and secondary masses. " "\n 'flat-detector-chirp-mass-ratio': Flat in detector frame chirp mass and mass ratio. " "This is the same as the deprecated 'chirp-mass' option. Can be in the format of a dict with the same keys as the sample-regex" ), ) collection_parser.add_argument( "--spin-prior", default="component", type=str, help=( "Spin prior, the only supported spin prior assumes the spins are isotropically distributed " "with a flat prior on the magnitude. Can be in the format of a dict with the same keys as the sample-regex." ), ) analysis_parser = parser.add_argument_group( title="Arguments describing analysis jobs", description="Analysis arguments" ) analysis_parser.add_argument( "--max-redshift", default=2.3, type=float, help="The maximum redshift considered, this should match the injections.", ) analysis_parser.add_argument( "--minimum-mass", default=2, type=float, help="The minimum mass considered, this should match the injections " "and is important for smoothed mass models.", ) analysis_parser.add_argument( "--maximum-mass", default=100, type=float, help="The maximum mass considered, this should match the injections " "and is important for smoothed mass models.", ) analysis_parser.add_argument( "--sampler", default="dynesty", type=str, help="The sampler to use, the default is dynesty", ) analysis_parser.add_argument( "--sampler-kwargs", type=str, default="Default", help=( "Dictionary of sampler-kwargs to pass in, e.g., {nlive: 1000} OR " "pass pre-defined set of sampler-kwargs {Default, FastTest}" ), ) analysis_parser.add_argument( "--vt-parameters", action="append", help=( "Which parameters to include in the VT estimate, should be some " "combination of mass, redshift, spin parameters, see the '--parameters' " "option for more details." ), ) analysis_parser.add_argument( "--enforce-minimum-neffective-per-event", action=StoreBoolean, default=True, help=( "Require that all Monte Carlo integrals for the single event " "marignalizaed likleihoods have at least as many effective samples" " as the number of events." ), ) analysis_parser.add_argument( "--maximum-uncertainty", type=float, default=np.inf, help=( "Require that all log likelihood evaluations have an uncertainty (standard deviation) less than" " this value. It is not recommended to use with the '--enforce-minimum-neffective-per-event' option." "See Talbot and Golomb (2023) arxiv:2304.06138" ), ) injection_parser = parser.add_argument_group( title="Arguments describing injections", description="Injection arguments" ) injection_parser.add_argument( "--injection-file", default=None, type=nonestr, help="JSON file containing population parameters, should be pandas readable.", ) injection_parser.add_argument( "--injection-index", type=noneint, help="Index in injection file to use." ) injection_parser.add_argument( "--sample-from-prior", action=StoreBoolean, help="Simulate posteriors from prior.", ) post_parser = parser.add_argument_group( title="Post processing arguments", description="Post arguments" ) post_parser.add_argument( "--post-plots", action=StoreBoolean, default=True, help="Whether to make post-processing plots.", ) post_parser.add_argument( "--make-summary", action=StoreBoolean, default=True, help="Whether to make a summary page.", ) post_parser.add_argument( "--n-post-samples", default=5000, type=int, help="Number of samples to use in the common format script", ) return parser