"""
Post-processing plotting functions. This makes spectra plots as well as plots
comparing fiducial and population-informed posteriors.
The module provides the `gwpopulation_pipe_plot` executable.
"""
#!/usr/bin/env python3
import os
import dill
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from bilby.core.result import plot_multiple, read_in_result
from bilby.core.utils import logger
from bilby.hyper.model import Model
from bilby_pipe.parser import StoreBoolean
from gwpopulation.backend import set_backend
from gwpopulation.conversions import convert_to_beta_parameters
from gwpopulation.models.mass import (
BrokenPowerLawPeakSmoothedMassDistribution,
BrokenPowerLawSmoothedMassDistribution,
MultiPeakSmoothedMassDistribution,
SinglePeakSmoothedMassDistribution,
power_law_primary_mass_ratio,
)
from gwpopulation.models.redshift import MadauDickinsonRedshift, PowerLawRedshift
from gwpopulation.models.spin import (
independent_spin_magnitude_beta,
independent_spin_orientation_gaussian_isotropic,
)
from gwpopulation.utils import to_numpy, xp
from tqdm import tqdm
from .parser import create_parser as create_main_parser
from .data_analysis import _load_model
_new_matplotlib_settings = {
"text.usetex": True,
"font.serif": "Computer Modern Roman",
"font.family": "Serif",
}
_old_matplotlib_settings = {
key: matplotlib.rcParams[key] for key in _new_matplotlib_settings
}
def _set_matplotlib():
for key in _new_matplotlib_settings:
matplotlib.rcParams[key] = _new_matplotlib_settings[key]
def _unset_matplotlib():
for key in _old_matplotlib_settings:
matplotlib.rcParams[key] = _old_matplotlib_settings[key]
def _load_samples(filename):
with open(filename, "rb") as ff:
return dill.load(ff)
def _dump_samples(filename, data):
with open(filename, "wb") as ff:
dill.dump(data, file=ff)
[docs]
def create_parser():
parser = create_main_parser()
parser.add_argument("--result-file", nargs="*")
parser.add_argument("--labels", nargs="*", default=None)
spectra = ["mass", "orientation", "magnitude", "redshift", "chi_eff_chi_p"]
for key in spectra:
parser.add_argument(
f"--{key}",
dest=key,
action=StoreBoolean,
default=True,
help=f"Make a {key} spectrum plot?",
)
for key in ["mass", "magnitude", "tilt", "redshift", "chi_eff_chi_p"]:
parser.add_argument(f"--{key}-model", default=None)
parser.add_argument(
"--corner",
dest="corner",
action=StoreBoolean,
default=False,
help="Make corner plots?",
)
parser.add_argument(
"--lower-limit",
type=float,
default=2.5,
help="Lower limit for confidence band.",
)
parser.add_argument(
"--upper-limit",
type=float,
default=97.5,
help="Upper limit for confidence band.",
)
parser.add_argument(
"--samples",
type=str,
default=None,
help="HDF5 file containing original and reampled posteriors.",
)
return parser
MAX_SAMPLES = 10000
[docs]
def corner_plots(result, *args, **kwargs):
"""
Make corner plots broken into distinct single-event parameters
based on known hyperparemeter names, e.g., all parameters describing the
mass spectrum.
Parameters
----------
result: `bilby.core.result.Result`
The `Bilby` result object containing the posterior.
args: unused
kwargs: unused
"""
mass_parameters = [
"alpha",
"mmax",
"mmin",
"mpp",
"sigpp",
"lam",
"delta_m",
"beta",
"alpha_1",
"alpha_2",
"break_fraction",
]
spin_magnitude_parameters = [
"alpha_chi",
"beta_chi",
"mu_chi",
"sigma_chi",
"mu_chi_1",
"mu_chi_2",
"sigma_chi_1",
"sigma_chi_2",
"amax",
"amax_1",
"amax_2",
"mu_chi_eff",
"sigma_chi_eff",
"mu_chi_p",
"sigma_chi_p",
]
spin_orientation_parameters = ["xi_spin", "sigma_1", "sigma_2", "sigma_spin"]
chi_eff_chi_p_parameters = [
"mu_chi_eff",
"sigma_chi_eff",
"mu_chi_p",
"sigma_chi_p",
"spin_covariance",
]
redshift_parameters = ["lambda_z"]
if len(result) > 1:
for kind, pars in zip(
["mass", "spin_magnitude", "spin_orientation", "redshift", "chi_eff_chi_p"],
[
mass_parameters,
spin_magnitude_parameters,
spin_orientation_parameters,
redshift_parameters,
chi_eff_chi_p_parameters,
],
):
plot_pars = [
par
for par in pars
if all([par in res.search_parameter_keys for res in result])
]
if len(plot_pars) == 0:
continue
logger.info(f"Making {kind} corner plot with: " + ", ".join(plot_pars))
plot_multiple(
results=result,
parameters=plot_pars,
quantiles=None,
filename=f"{result[0].outdir}/combined_{kind}_corner.png",
)
else:
result = result[0]
for kind, pars in zip(
["mass", "spin_magnitude", "spin_orientation", "redshift", "chi_eff_chi_p"],
[
mass_parameters,
spin_magnitude_parameters,
spin_orientation_parameters,
redshift_parameters,
chi_eff_chi_p_parameters,
],
):
plot_pars = [par for par in result.search_parameter_keys if par in pars]
if len(plot_pars) == 0:
continue
logger.info(f"Making {kind} corner plot with: " + ", ".join(plot_pars))
result.plot_corner(
parameters=plot_pars,
quantiles=None,
filename=f"{result.outdir}/{result.label}_{kind}_corner.png",
)
[docs]
def mass_spectrum_plot(results, args, rate=False, observed=False, save=True):
"""
Make the posterior mass spectrum plot given either one or multiple result
objects.
Parameters
----------
results: [list, `bilby.core.result.Result`]
`Bilby` result(s) to make the spectra from.
args: ArgumentParser
The arguments describing the model.
rate: bool
Whether to scale the spectra by the inferred rate.
observed: bool
Whether to correct for selection effects. Not currently implemented.
save: bool
Whether to save the result to file.
Returns
-------
[dict, `matplotlib.pyplot.Figure`]
If `save` the data behind the plot is returned as a dictionary.
Else, the figure handle is returned.
"""
mass_1 = xp.linspace(2, 100, 1000)
mass_ratio = xp.linspace(0.1, 1, 500)
mass_1_grid, mass_ratio_grid = xp.meshgrid(mass_1, mass_ratio)
if not isinstance(results, list):
result = [results]
if observed:
# vt_evaluator = load_vt(None)
# vt_evaluator
# TODO: make this usable...
raise NotImplementedError(
"Observation weighted spectrum plots not yet supported."
)
fig, axs = plt.subplots(2, 1, figsize=(12, 8))
peak_1 = 0
peak_2 = 0
for result in results:
filename = f"{result.outdir}/{result.label}_mass_data.h5"
if os.path.isfile(filename):
_data = _load_samples(filename)
lines = _data["lines"]
ppd = _data["ppd"]
injected = _data.get("injected", None)
else:
data = dict(
mass_1=mass_1_grid,
mass_ratio=mass_ratio_grid,
mass_2=mass_1_grid * mass_ratio_grid,
)
lines = dict(mass_1=list(), mass_ratio=list())
ppd = xp.zeros_like(data["mass_1"])
if len(result.posterior) > MAX_SAMPLES:
samples = result.posterior.sample(MAX_SAMPLES)
else:
samples = result.posterior
if model := result.meta_data["models"].get("mass", None):
model = Model([_load_model(model, args)])
elif args.mass_model is not None:
model = Model([_load_model(args.mass_model, args)])
elif "mpp_1" in samples.keys():
model = Model([MultiPeakSmoothedMassDistribution()])
if "delta_m" not in samples:
samples["delta_m"] = 0
elif "alpha_2" in samples.keys():
if "mpp" in samples.keys():
model = Model([BrokenPowerLawPeakSmoothedMassDistribution()])
else:
model = Model([BrokenPowerLawSmoothedMassDistribution()])
if "delta_m" not in samples:
samples["delta_m"] = 0
elif "mpp" in samples.keys():
model = Model([SinglePeakSmoothedMassDistribution()])
if "delta_m" not in samples:
samples["delta_m"] = 0
elif "alpha" in samples.keys():
model = Model([power_law_primary_mass_ratio])
for ii in tqdm(range(len(samples))):
parameters = dict(samples.iloc[ii])
model.parameters.update(parameters)
prob = model.prob(data)
if rate:
if "rate" not in parameters:
rate = False
else:
prob *= parameters["rate"]
ppd += prob
mass_1_prob = xp.trapz(prob, mass_ratio, axis=0)
mass_ratio_prob = xp.trapz(prob, mass_1, axis=-1)
lines["mass_1"].append(mass_1_prob)
lines["mass_ratio"].append(mass_ratio_prob)
for key in lines:
lines[key] = np.vstack([to_numpy(line) for line in lines[key]])
ppd /= len(samples)
ppd = to_numpy(ppd)
if result.injection_parameters is not None and not rate:
model.parameters.update(result.injection_parameters)
injected = to_numpy(model.prob(data))
else:
injected = None
_dump_samples(filename, data=dict(lines=lines, ppd=ppd, injected=injected))
mass_1 = to_numpy(mass_1)
mass_ratio = to_numpy(mass_ratio)
mass_1_ppd = np.trapz(ppd, mass_ratio, axis=0)
mass_ratio_ppd = np.trapz(ppd, mass_1, axis=-1)
label = " ".join(result.label.split("_")).title()
axs[0].semilogy(mass_1, mass_1_ppd, label=label)
axs[0].fill_between(
mass_1,
np.percentile(lines["mass_1"], args.lower_limit, axis=0),
np.percentile(lines["mass_1"], args.upper_limit, axis=0),
alpha=0.5,
)
_peak_1 = max(np.percentile(lines["mass_1"], args.upper_limit, axis=0))
peak_1 = max(peak_1, _peak_1)
axs[1].semilogy(mass_ratio, mass_ratio_ppd)
axs[1].fill_between(
mass_ratio,
np.percentile(lines["mass_ratio"], args.lower_limit, axis=0),
np.percentile(lines["mass_ratio"], args.upper_limit, axis=0),
alpha=0.5,
)
_peak_2 = max(np.percentile(lines["mass_ratio"], args.upper_limit, axis=0))
peak_2 = max(peak_2, _peak_2)
if injected is not None:
injected_mass_1 = np.trapz(injected, mass_ratio, axis=0)
injected_mass_ratio = np.trapz(injected, mass_1, axis=-1)
axs[0].plot(
mass_1, injected_mass_1, color="k", label="True", linestyle="--"
)
axs[1].plot(mass_ratio, injected_mass_ratio, color="k", linestyle="--")
axs[0].set_xlim(2, 100)
axs[0].set_ylim(peak_1 / 100000, peak_1 * 1.1)
axs[0].set_xlabel("$m_{1}$ [$M_{\\odot}$]")
axs[0].legend(bbox_to_anchor=(0.5, 1.15), loc="upper center")
if rate:
ylabel = "$\\frac{d\\mathcal{R}}{dm_{1}}$ [Gpc$^{-3}$yr$^{-1}M_{\\odot}^{-1}$]"
else:
ylabel = "$p(m_{1})$ [$M_{\\odot}^{-1}$]"
axs[0].set_ylabel(ylabel)
axs[1].set_xlim(0.1, 1)
axs[1].set_ylim(peak_2 / 10000, peak_2 * 1.1)
axs[1].set_xlabel("$q$")
if rate:
ylabel = "$\\frac{d\\mathcal{R}}{dq}$ [Gpc$^{-3}$yr$^{-1}$]"
else:
ylabel = "$p(q)$"
axs[1].set_ylabel(ylabel)
if len(results) == 1:
file_name = f"{result.outdir}/{result.label}_mass_spectrum.pdf"
else:
file_name = f"{result.outdir}/combined_mass_spectrum.pdf"
plt.tight_layout()
if save:
plt.savefig(file_name, format="pdf", dpi=600, bbox_inches="tight")
plt.close()
return ppd
else:
return fig
[docs]
def chi_eff_chi_p_plot(results, args, rate=False, observed=False, save=True):
"""
Make the posterior chi_eff chi_p plot given either one or multiple result
objects.
Parameters
----------
results: [list, `bilby.core.result.Result`]
`Bilby` result(s) to make the spectra from.
args: ArgumentParser
The arguments describing the model.
rate: bool
Whether to scale the spectra by the inferred rate.
observed: bool
Whether to correct for selection effects. Not currently implemented.
save: bool
Whether to save the result to file.
Returns
-------
[dict, `matplotlib.pyplot.Figure`]
If `save` the data behind the plot is returned as a dictionary.
Else, the figure handle is returned.
"""
chi_eff = xp.linspace(-1, 1, 1000)
chi_p = xp.linspace(0, 1, 500)
chi_eff_grid, chi_p_grid = xp.meshgrid(chi_eff, chi_p)
if not isinstance(results, list):
result = [results]
if observed:
# vt_evaluator = load_vt(None)
# vt_evaluator
# TODO: make this usable...
raise NotImplementedError(
"Observation weighted spectrum plots not yet supported."
)
fig, axs = plt.subplots(2, 1, figsize=(12, 8))
for result in results:
filename = f"{result.outdir}/{result.label}_spin_data.h5"
if os.path.isfile(filename):
_data = _load_samples(filename)
lines = _data["lines"]
ppd = _data["ppd"]
injected = _data.get("injected", None)
else:
data = dict(
chi_eff=chi_eff_grid,
chi_p=chi_p_grid,
)
lines = dict(chi_eff=list(), chi_p=list())
ppd = xp.zeros_like(data["chi_eff"])
if len(result.posterior) > MAX_SAMPLES:
samples = result.posterior.sample(MAX_SAMPLES)
else:
samples = result.posterior
try:
try:
model = result.meta_data["models"]["spin"]
except KeyError:
model = result.meta_data["models"]["effective_spin"]
except KeyError:
raise KeyError("No chi_eff chi_p spin model found in result.")
model = Model([_load_model(model, args)])
for ii in tqdm(range(len(samples))):
parameters = dict(samples.iloc[ii])
model.parameters.update(parameters)
prob = model.prob(data)
if rate:
if "rate" not in parameters:
rate = False
else:
prob *= parameters["rate"]
ppd += prob
chi_eff_prob = xp.trapz(prob, chi_p, axis=0)
chi_p_prob = xp.trapz(prob, chi_eff, axis=-1)
lines["chi_eff"].append(chi_eff_prob)
lines["chi_p"].append(chi_p_prob)
for key in lines:
lines[key] = np.vstack([to_numpy(line) for line in lines[key]])
ppd /= len(samples)
ppd = to_numpy(ppd)
if result.injection_parameters is not None and not rate:
model.parameters.update(result.injection_parameters)
injected = to_numpy(model.prob(data))
else:
injected = None
_dump_samples(filename, data=dict(lines=lines, ppd=ppd, injected=injected))
chi_eff = to_numpy(chi_eff)
chi_p = to_numpy(chi_p)
chi_eff_ppd = np.trapz(ppd, chi_p, axis=0)
chi_p_ppd = np.trapz(ppd, chi_eff, axis=1)
label = " ".join(result.label.split("_")).title()
axs[0].plot(chi_eff, chi_eff_ppd, label=label)
axs[0].fill_between(
chi_eff,
np.percentile(lines["chi_eff"], args.lower_limit, axis=0),
np.percentile(lines["chi_eff"], args.upper_limit, axis=0),
alpha=0.5,
)
axs[1].plot(chi_p, chi_p_ppd)
axs[1].fill_between(
chi_p,
np.percentile(lines["chi_p"], args.lower_limit, axis=0),
np.percentile(lines["chi_p"], args.upper_limit, axis=0),
alpha=0.5,
)
if injected is not None:
injected_chi_p = np.trapz(injected, chi_p, axis=0)
injected_chi_eff = np.trapz(injected, chi_eff, axis=-1)
axs[0].plot(
chi_eff, injected_chi_eff, color="k", label="True", linestyle="--"
)
axs[1].plot(chi_p, injected_chi_p, color="k", linestyle="--")
axs[0].set_xlim(-1, 1)
axs[0].set_ylim(0)
axs[0].set_xlabel("$\\chi_{eff}$")
axs[0].legend(loc="upper center")
if rate:
ylabel = "$\\frac{d\\mathcal{R}}{d\\chi_{eff}}$ [Gpc$^{-3}$yr$^{-1}$]"
else:
ylabel = "$p(\\chi_{eff})$]"
axs[0].set_ylabel(ylabel)
axs[1].set_xlim(0.0, 1)
axs[1].set_ylim(0)
axs[1].set_xlabel("$\\chi_p$")
if rate:
ylabel = "$\\frac{d\\mathcal{R}}{d\\chi_p}$ [Gpc$^{-3}$yr$^{-1}$]"
else:
ylabel = "$p(\\chi_p)$"
axs[1].set_ylabel(ylabel)
if len(results) == 1:
file_name = f"{result.outdir}/{result.label}_spin_spectrum.pdf"
else:
file_name = f"{result.outdir}/combined_spin_spectrum.pdf"
plt.tight_layout()
if save:
plt.savefig(file_name, format="pdf", dpi=600, bbox_inches="tight")
plt.close()
return ppd
else:
return fig
[docs]
def spin_magnitude_spectrum_plot(results, args, rate=False, save=True):
"""
Make the posterior spin magnitude plot given either one or multiple result
objects.
Parameters
----------
results: [list, `bilby.core.result.Result`]
`Bilby` result(s) to make the spectra from.
args: ArgumentParser
The arguments describing the model.
rate: bool
Whether to scale the spectra by the inferred rate.
save: bool
Whether to save the result to file.
Returns
-------
[dict, `matplotlib.pyplot.Figure`]
If `save` the data behind the plot is returned as a dictionary.
Else, the figure handle is returned.
"""
mags = xp.linspace(0, 1, 1000)
a_1, a_2 = xp.meshgrid(mags, mags)
fig, axs = plt.subplots(1, 2, figsize=(12, 4))
for result in results:
filename = f"{result.outdir}/{result.label}_magnitude_data.h5"
if os.path.isfile(filename):
_data = _load_samples(filename)
lines = _data["lines"]
ppd = _data["ppd"]
injected = _data.get("injected", None)
else:
if model := result.meta_data["models"].get("magnitude", None):
model = Model([_load_model(model, args)])
elif args.magnitude_model is not None:
model = Model([_load_model(args.magnitude_model, args=args)])
else:
model = Model([independent_spin_magnitude_beta])
for key in ["amax", "mu_chi", "sigma_chi", "alpha_chi", "beta_chi"]:
if key in result.posterior and f"{key}_1" not in result.posterior:
result.posterior[f"{key}_1"] = result.posterior[key]
result.posterior[f"{key}_2"] = result.posterior[key]
del result.posterior[key]
result.posterior = convert_to_beta_parameters(result.posterior)[0]
data = dict(a_1=a_1, a_2=a_2)
lines = dict(a_1=list(), a_2=list())
ppd = xp.zeros_like(data["a_1"])
if len(result.posterior) > MAX_SAMPLES:
samples = result.posterior.sample(MAX_SAMPLES)
else:
samples = result.posterior
for ii in tqdm(range(len(samples))):
parameters = dict(samples.iloc[ii])
model.parameters.update(parameters)
prob = model.prob(data)
if rate:
if "rate" not in parameters:
rate = False
else:
prob *= parameters["rate"]
ppd += prob
a_1_prob = xp.trapz(prob, mags, axis=0)
a_2_prob = xp.trapz(prob, mags, axis=-1)
lines["a_1"].append(a_1_prob)
lines["a_2"].append(a_2_prob)
for key in lines:
lines[key] = np.vstack([to_numpy(line) for line in lines[key]])
ppd /= len(samples)
ppd = to_numpy(ppd)
if result.injection_parameters is not None and not rate:
parameters = result.injection_parameters.copy()
for key in ["amax", "mu_chi", "sigma_chi", "alpha_chi", "beta_chi"]:
if key in parameters and f"{key}_1" not in parameters:
parameters[f"{key}_1"] = parameters[key]
parameters[f"{key}_2"] = parameters[key]
del parameters[key]
parameters = convert_to_beta_parameters(parameters)[0]
model.parameters.update(parameters)
injected = to_numpy(model.prob(data))
else:
injected = None
_dump_samples(filename, data=dict(lines=lines, ppd=ppd))
mags = to_numpy(mags)
a_1_ppd = np.trapz(ppd, mags, axis=0)
a_2_ppd = np.trapz(ppd, mags, axis=1)
label = " ".join(result.label.split("_")).title()
axs[0].plot(mags, a_1_ppd, label=label)
axs[0].fill_between(
mags,
np.percentile(lines["a_1"], args.lower_limit, axis=0),
np.percentile(lines["a_1"], args.upper_limit, axis=0),
alpha=0.5,
)
axs[1].plot(mags, a_2_ppd)
axs[1].fill_between(
mags,
np.percentile(lines["a_2"], args.lower_limit, axis=0),
np.percentile(lines["a_2"], args.upper_limit, axis=0),
alpha=0.5,
)
if injected is not None and not rate:
a_1_injected = np.trapz(injected, mags, axis=0)
a_2_injected = np.trapz(injected, mags, axis=1)
axs[0].plot(mags, a_1_injected, color="k", label="True", linestyle="--")
axs[1].plot(mags, a_2_injected, color="k", linestyle="--")
for ii in [1, 2]:
axs[ii - 1].set_xlim(0, 1)
axs[ii - 1].set_ylim(0)
axs[ii - 1].set_xlabel(f"$a_{ii}$")
if rate:
ylabel = f"$\\frac{{dN}}{{da_{ii}}}$"
else:
ylabel = f"$p(a_{ii})$"
axs[ii - 1].set_ylabel(ylabel)
axs[0].legend(bbox_to_anchor=(0.5, 1.15), loc="upper center")
if len(results) == 1:
file_name = f"{result.outdir}/{result.label}_magnitude_spectrum.pdf"
else:
file_name = f"{result.outdir}/comparison_magnitude_spectrum.pdf"
if save:
plt.savefig(file_name, format="pdf", dpi=600, bbox_inches="tight")
plt.close()
return ppd
else:
return fig
[docs]
def spin_orientation_spectrum_plot(results, args, rate=False, save=True):
"""
Make the posterior spin orientation plot given either one or multiple result
objects.
Parameters
----------
results: [list, `bilby.core.result.Result`]
`Bilby` result(s) to make the spectra from.
args: ArgumentParser
The arguments describing the model.
rate: bool
Whether to scale the spectra by the inferred rate.
save: bool
Whether to save the result to file.
Returns
-------
[dict, `matplotlib.pyplot.Figure`]
If `save` the data behind the plot is returned as a dictionary.
Else, the figure handle is returned.
"""
cos_tilts = xp.linspace(-1, 1, 1000)
cos_tilt_1, cos_tilt_2 = xp.meshgrid(cos_tilts, cos_tilts)
fig, axs = plt.subplots(1, 2, figsize=(12, 4))
for result in results:
filename = f"{result.outdir}/{result.label}_orientation_data.h5"
if os.path.isfile(filename):
_data = _load_samples(filename)
lines = _data["lines"]
ppd = _data["ppd"]
injected = _data.get("injected", None)
else:
if model := result.meta_data["models"].get("tilt", None):
model = Model([_load_model(model, args)])
elif args.tilt_model is not None:
model = Model([_load_model(args.tilt_model, args=args)])
else:
model = Model([independent_spin_orientation_gaussian_isotropic])
if "sigma_1" not in result.posterior:
result.posterior["sigma_1"] = result.posterior["sigma_spin"]
result.posterior["sigma_2"] = result.posterior["sigma_spin"]
data = dict(cos_tilt_1=cos_tilt_1, cos_tilt_2=cos_tilt_2)
lines = dict(cos_tilt_1=list(), cos_tilt_2=list())
ppd = xp.zeros_like(data["cos_tilt_1"])
if len(result.posterior) > MAX_SAMPLES:
samples = result.posterior.sample(MAX_SAMPLES)
else:
samples = result.posterior
for ii in tqdm(range(len(samples))):
parameters = dict(samples.iloc[ii])
model.parameters.update(parameters)
prob = model.prob(data)
if rate:
if "rate" not in parameters:
rate = False
else:
prob *= parameters["rate"]
ppd += prob
cos_tilt_1_prob = xp.trapz(prob, cos_tilts, axis=0)
cos_tilt_2_prob = xp.trapz(prob, cos_tilts, axis=1)
lines["cos_tilt_1"].append(cos_tilt_1_prob)
lines["cos_tilt_2"].append(cos_tilt_2_prob)
for key in lines:
lines[key] = np.vstack([to_numpy(line) for line in lines[key]])
ppd /= len(samples)
ppd = to_numpy(ppd)
if result.injection_parameters is not None and not rate:
parameters = result.injection_parameters
if "sigma_1" not in parameters:
parameters["sigma_1"] = parameters["sigma_spin"]
parameters["sigma_2"] = parameters["sigma_spin"]
model.parameters.update(parameters)
injected = to_numpy(model.prob(data))
else:
injected = None
_dump_samples(filename, data=dict(lines=lines, ppd=ppd))
cos_tilts = to_numpy(cos_tilts)
cos_tilt_1_ppd = np.trapz(ppd, cos_tilts, axis=0)
cos_tilt_2_ppd = np.trapz(ppd, cos_tilts, axis=1)
label = " ".join(result.label.split("_")).title()
axs[0].plot(cos_tilts, cos_tilt_1_ppd, label=label)
axs[0].fill_between(
cos_tilts,
np.percentile(lines["cos_tilt_1"], args.lower_limit, axis=0),
np.percentile(lines["cos_tilt_1"], args.upper_limit, axis=0),
alpha=0.5,
)
axs[1].plot(cos_tilts, cos_tilt_2_ppd)
axs[1].fill_between(
cos_tilts,
np.percentile(lines["cos_tilt_2"], args.lower_limit, axis=0),
np.percentile(lines["cos_tilt_2"], args.upper_limit, axis=0),
alpha=0.5,
)
if injected is not None and not rate:
t_1_injected = np.trapz(injected, cos_tilts, axis=0)
t_2_injected = np.trapz(injected, cos_tilts, axis=1)
axs[0].plot(
cos_tilts, t_1_injected, color="k", label="True", linestyle="--"
)
axs[1].plot(cos_tilts, t_2_injected, color="k", linestyle="--")
if rate:
ylabel = "$\\frac{{d\\mathcal{{R}}}}{{d\\cos t_{}}}$ [Gpc$^{{-3}}$yr$^{{-1}}$]"
else:
ylabel = "$p(\\cos t_{})$"
for ii in [1, 2]:
axs[ii - 1].set_xlim(-1, 1)
axs[ii - 1].set_ylim(0)
axs[ii - 1].set_xlabel(f"$\\cos t_{ii}$")
axs[ii - 1].set_ylabel(ylabel.format(str(ii)))
axs[0].legend(bbox_to_anchor=(0.5, 1.15), loc="upper center")
if len(results) == 1:
file_name = f"{result.outdir}/{result.label}_orientation_spectrum.pdf"
else:
file_name = f"{result.outdir}/comparison_orientation_spectrum.pdf"
if save:
plt.savefig(file_name, format="pdf", dpi=600, bbox_inches="tight")
plt.close()
return ppd
else:
return fig
[docs]
def redshift_spectrum_plot(results, args, rate=True, save=True):
"""
Make the posterior redshift plot given either one or multiple result
objects.
Parameters
----------
results: [list, `bilby.core.result.Result`]
`Bilby` result(s) to make the spectra from.
args: ArgumentParser
The arguments describing the model.
rate: bool
Whether to scale the spectra by the inferred rate.
save: bool
Whether to save the result to file.
Returns
-------
[dict, `matplotlib.pyplot.Figure`]
If `save` the data behind the plot is returned as a dictionary.
Else, the figure handle is returned.
"""
fig, ax = plt.subplots(1, 1, figsize=(6, 4))
for result in results:
if model := result.meta_data["models"].get("redshift", None):
model = _load_model(model, args)
elif args.redshift_model is not None:
model = _load_model(args.redshift_model, args=args)
elif "lamb" in result.posterior:
model = PowerLawRedshift(z_max=2.3)
elif "gamma" in result.posterior:
model = MadauDickinsonRedshift(z_max=args.upper_limit)
else:
raise KeyError("Cannot find redshift parameters.")
redshifts = model.zs
_np_redshifts = to_numpy(redshifts)
filename = f"{result.outdir}/{result.label}_redshift_data.h5"
if os.path.exists(filename):
_data = _load_samples(filename)
lines = _data["lines"]
ppd = _data["ppd"]
else:
ppd = xp.zeros_like(redshifts)
lines = dict(redshift=list())
if len(result.posterior) > MAX_SAMPLES:
samples = result.posterior.sample(MAX_SAMPLES)
else:
samples = result.posterior
for ii in tqdm(range(len(samples))):
parameters = dict(samples.iloc[ii])
prob = model.psi_of_z(
redshift=redshifts,
**{key: parameters[key] for key in model.variable_names},
)
if rate:
if "surveyed_hypervolume" not in parameters:
rate = False
else:
prob *= parameters["rate"]
ppd += prob
lines["redshift"].append(to_numpy(prob))
ppd /= len(samples)
ppd = to_numpy(ppd)
_dump_samples(filename, data=dict(lines=lines, ppd=ppd))
label = " ".join(result.label.split("_")).title()
ax.plot(_np_redshifts, ppd, label=label)
ax.fill_between(
_np_redshifts,
np.percentile(lines["redshift"], args.lower_limit, axis=0),
np.percentile(lines["redshift"], args.upper_limit, axis=0),
alpha=0.5,
)
if rate:
ylabel = "$\\mathcal{R}(z)$ [Gpc$^{-3}$yr$^{-1}$]"
else:
ylabel = "$\\frac{R(z)}{R(z=0)}$"
ax.set_xlim(0, 2.3)
ax.set_yscale("log")
ax.set_xlabel("$z$")
ax.set_ylabel(ylabel)
ax.legend(bbox_to_anchor=(0.5, 1.15), loc="upper center")
if len(results) == 1:
file_name = f"{result.outdir}/{result.label}_redshift_spectrum.pdf"
else:
file_name = f"{result.outdir}/comparison_redshift_spectrum.pdf"
if save:
plt.savefig(file_name, format="pdf", dpi=600, bbox_inches="tight")
plt.close()
return ppd
else:
return fig
[docs]
def reweighted_comparison(data, outdir="outdir"):
"""
Plot a comparison of fiducial and population-informed single-event posteriors.
The makes an interactive `html` figure with `plotly`.
Parameters
----------
data: dict
Dictionary containing `original` and `reweighted` posteriors.
outdir: str
The output directory to save the file to.
"""
import plotly.graph_objects as go
from plotly.offline import plot
from plotly.subplots import make_subplots
parameter_names = list(data["original"].keys())
plotting_parameters = list()
for key in ["original", "reweighted"]:
if "mass_1" in parameter_names:
plotting_parameters.append("mass_1")
if "mass_ratio" in parameter_names and "mass_2" not in parameter_names:
data[key]["mass_2"] = data[key]["mass_1"] * data[key]["mass_ratio"]
elif "mass_ratio" not in parameter_names and "mass_2" in parameter_names:
data[key]["mass_ratio"] = data[key]["mass_2"] / data[key]["mass_1"]
if all(
[
_key in data[key]
for _key in ["a_1", "a_2", "cos_tilt_1", "cos_tilt_2", "mass_ratio"]
]
):
data[key]["chi_eff"] = (
data[key]["a_1"] * data[key]["cos_tilt_1"]
+ data[key]["mass_ratio"] * data[key]["a_2"] * data[key]["cos_tilt_2"]
) / (1 + data[key]["mass_ratio"])
in_plane_1 = data[key]["a_1"] * (1 - data[key]["cos_tilt_1"] ** 2) ** 0.5
in_plane_2 = data[key]["a_2"] * (1 - data[key]["cos_tilt_2"] ** 2) ** 0.5
data[key]["chi_p"] = np.maximum(
in_plane_1,
data[key]["mass_ratio"]
* (3 + 4 * data[key]["mass_ratio"])
/ (4 + 3 * data[key]["mass_ratio"])
* in_plane_2,
)
if "chi_eff" in data["original"]:
plotting_parameters.append("chi_eff")
plotting_parameters.append("chi_p")
plotting_parameters.append("mass_ratio")
plotting_parameters.append("mass_2")
if "names" not in data:
names = [str(ii) for ii in range(data["original"][parameter_names[0]].shape[0])]
else:
names = data["names"]
fig = make_subplots(
rows=len(parameter_names),
cols=1,
row_heights=[1 / len(parameter_names)] * len(parameter_names),
)
fig.update_layout(
template="plotly_white",
font=dict(family="Computer Modern"),
xaxis=dict(showgrid=False),
yaxis=dict(showgrid=False),
)
kinds = list()
parameters = list()
legends = list()
for jj, parameter in enumerate(plotting_parameters):
for ii, event in enumerate(names):
fig.add_trace(
go.Histogram(
x=to_numpy(data["original"][parameter][ii])[:1000],
histnorm="probability density",
marker_color="Blue",
legendgroup=event,
showlegend=False,
name=event,
hovertext=event,
),
row=jj + 1,
col=1,
)
kinds.append("original")
parameters.append(parameter)
if jj == 0:
legends.append(True)
else:
legends.append(False)
fig.add_trace(
go.Histogram(
x=to_numpy(data["reweighted"][parameter][ii])[:1000],
histnorm="probability density",
marker_color="Red",
legendgroup=event,
showlegend=True and jj == 0,
name=event,
hovertext=event,
),
row=jj + 1,
col=1,
)
kinds.append("resampled")
parameters.append(parameter)
if jj == 0:
legends.append(True)
else:
legends.append(False)
fig.update_xaxes(title_text=" ".join(parameter.split("_")), row=jj + 1, col=1)
fig.update_layout(barmode="overlay")
fig.update_traces(opacity=0.3)
updatemenus = [
go.layout.Updatemenu(
type="buttons",
direction="right",
active=0,
x=0.57,
y=1.2,
buttons=list(
[
dict(
label="All",
method="update",
args=[
{
"visible": [True] * len(kinds),
"showlegend": [
kind == "original" and legend
for kind, legend in zip(kinds, legends)
],
}
],
),
dict(
label="Original",
method="update",
args=[
{
"visible": [kind == "original" for kind in kinds],
"showlegend": [
kind == "original" and legend
for kind, legend in zip(kinds, legends)
],
}
],
),
dict(
label="Resampled",
method="update",
args=[
{
"visible": [kind == "resampled" for kind in kinds],
"showlegend": [
kind == "original" and legend
for kind, legend in zip(kinds, legends)
],
}
],
),
]
),
)
]
fig.update_layout(updatemenus=updatemenus)
fig.update_layout(height=250 * len(plotting_parameters), width=1000)
filename = f"{outdir}/{data['label']}_samples.html"
plot(fig, filename=filename, include_mathjax="cdn", auto_open=False)
PLOT_MAP = dict(
mass=mass_spectrum_plot,
magnitude=spin_magnitude_spectrum_plot,
orientation=spin_orientation_spectrum_plot,
redshift=redshift_spectrum_plot,
corner=corner_plots,
chi_eff_chi_p=chi_eff_chi_p_plot,
)
def _safe_plot(result, args, key):
_set_matplotlib()
try:
PLOT_MAP[key](result, args, rate=True)
except Exception as e:
if "TeX" in e.args[0]:
logger.warning(
f"Failed to create plot for {key} due to missing TeX. " "Disabling TeX."
)
_unset_matplotlib()
PLOT_MAP[key](result, args, rate=True)
else:
logger.warning(f"Failed to create {key} plot with message {e}")
_unset_matplotlib()
[docs]
def main():
parser = create_parser()
args, _ = parser.parse_known_args()
set_backend(args.backend)
results = [read_in_result(res) for res in args.result_file]
if args.labels is not None:
for label, result in zip(args.labels, results):
result.label = label
if args.run_dir is not None:
for result in results:
result.outdir = os.path.join(args.run_dir, "result")
for key in [
"mass",
"magnitude",
"orientation",
"redshift",
"corner",
"chi_eff_chi_p",
]:
if getattr(args, key):
logger.info(f"Making {key} plot")
_safe_plot(results, args, key)
if args.samples is not None and os.path.exists(args.samples):
samples = _load_samples(args.samples)
reweighted_comparison(data=samples, outdir=os.path.join(args.run_dir, "result"))
elif args.samples is not None:
logger.info(
f"Cannot find samples file {args.samples}. \
Skipping reweighted comparison plot."
)
if __name__ == "__main__":
main()