Source code for gwpopulation_pipe.post_plots

"""
Post-processing plotting functions. This makes spectra plots as well as plots
comparing fiducial and population-informed posteriors.

The module provides the `gwpopulation_pipe_plot` executable.
"""

#!/usr/bin/env python3
import os

import dill
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from bilby.core.result import plot_multiple, read_in_result
from bilby.core.utils import logger
from bilby.hyper.model import Model
from bilby_pipe.parser import StoreBoolean
from gwpopulation.backend import set_backend
from gwpopulation.conversions import convert_to_beta_parameters
from gwpopulation.models.mass import (
    BrokenPowerLawPeakSmoothedMassDistribution,
    BrokenPowerLawSmoothedMassDistribution,
    MultiPeakSmoothedMassDistribution,
    SinglePeakSmoothedMassDistribution,
    power_law_primary_mass_ratio,
)
from gwpopulation.models.redshift import MadauDickinsonRedshift, PowerLawRedshift
from gwpopulation.models.spin import (
    independent_spin_magnitude_beta,
    independent_spin_orientation_gaussian_isotropic,
)
from gwpopulation.utils import to_numpy, xp
from tqdm import tqdm

from .parser import create_parser as create_main_parser
from .data_analysis import _load_model

_new_matplotlib_settings = {
    "text.usetex": True,
    "font.serif": "Computer Modern Roman",
    "font.family": "Serif",
}

_old_matplotlib_settings = {
    key: matplotlib.rcParams[key] for key in _new_matplotlib_settings
}


def _set_matplotlib():
    for key in _new_matplotlib_settings:
        matplotlib.rcParams[key] = _new_matplotlib_settings[key]


def _unset_matplotlib():
    for key in _old_matplotlib_settings:
        matplotlib.rcParams[key] = _old_matplotlib_settings[key]


def _load_samples(filename):
    with open(filename, "rb") as ff:
        return dill.load(ff)


def _dump_samples(filename, data):
    with open(filename, "wb") as ff:
        dill.dump(data, file=ff)


[docs] def create_parser(): parser = create_main_parser() parser.add_argument("--result-file", nargs="*") parser.add_argument("--labels", nargs="*", default=None) spectra = ["mass", "orientation", "magnitude", "redshift", "chi_eff_chi_p"] for key in spectra: parser.add_argument( f"--{key}", dest=key, action=StoreBoolean, default=True, help=f"Make a {key} spectrum plot?", ) for key in ["mass", "magnitude", "tilt", "redshift", "chi_eff_chi_p"]: parser.add_argument(f"--{key}-model", default=None) parser.add_argument( "--corner", dest="corner", action=StoreBoolean, default=False, help="Make corner plots?", ) parser.add_argument( "--lower-limit", type=float, default=2.5, help="Lower limit for confidence band.", ) parser.add_argument( "--upper-limit", type=float, default=97.5, help="Upper limit for confidence band.", ) parser.add_argument( "--samples", type=str, default=None, help="HDF5 file containing original and reampled posteriors.", ) return parser
MAX_SAMPLES = 10000
[docs] def corner_plots(result, *args, **kwargs): """ Make corner plots broken into distinct single-event parameters based on known hyperparemeter names, e.g., all parameters describing the mass spectrum. Parameters ---------- result: `bilby.core.result.Result` The `Bilby` result object containing the posterior. args: unused kwargs: unused """ mass_parameters = [ "alpha", "mmax", "mmin", "mpp", "sigpp", "lam", "delta_m", "beta", "alpha_1", "alpha_2", "break_fraction", ] spin_magnitude_parameters = [ "alpha_chi", "beta_chi", "mu_chi", "sigma_chi", "mu_chi_1", "mu_chi_2", "sigma_chi_1", "sigma_chi_2", "amax", "amax_1", "amax_2", "mu_chi_eff", "sigma_chi_eff", "mu_chi_p", "sigma_chi_p", ] spin_orientation_parameters = ["xi_spin", "sigma_1", "sigma_2", "sigma_spin"] chi_eff_chi_p_parameters = [ "mu_chi_eff", "sigma_chi_eff", "mu_chi_p", "sigma_chi_p", "spin_covariance", ] redshift_parameters = ["lambda_z"] if len(result) > 1: for kind, pars in zip( ["mass", "spin_magnitude", "spin_orientation", "redshift", "chi_eff_chi_p"], [ mass_parameters, spin_magnitude_parameters, spin_orientation_parameters, redshift_parameters, chi_eff_chi_p_parameters, ], ): plot_pars = [ par for par in pars if all([par in res.search_parameter_keys for res in result]) ] if len(plot_pars) == 0: continue logger.info(f"Making {kind} corner plot with: " + ", ".join(plot_pars)) plot_multiple( results=result, parameters=plot_pars, quantiles=None, filename=f"{result[0].outdir}/combined_{kind}_corner.png", ) else: result = result[0] for kind, pars in zip( ["mass", "spin_magnitude", "spin_orientation", "redshift", "chi_eff_chi_p"], [ mass_parameters, spin_magnitude_parameters, spin_orientation_parameters, redshift_parameters, chi_eff_chi_p_parameters, ], ): plot_pars = [par for par in result.search_parameter_keys if par in pars] if len(plot_pars) == 0: continue logger.info(f"Making {kind} corner plot with: " + ", ".join(plot_pars)) result.plot_corner( parameters=plot_pars, quantiles=None, filename=f"{result.outdir}/{result.label}_{kind}_corner.png", )
[docs] def mass_spectrum_plot(results, args, rate=False, observed=False, save=True): """ Make the posterior mass spectrum plot given either one or multiple result objects. Parameters ---------- results: [list, `bilby.core.result.Result`] `Bilby` result(s) to make the spectra from. args: ArgumentParser The arguments describing the model. rate: bool Whether to scale the spectra by the inferred rate. observed: bool Whether to correct for selection effects. Not currently implemented. save: bool Whether to save the result to file. Returns ------- [dict, `matplotlib.pyplot.Figure`] If `save` the data behind the plot is returned as a dictionary. Else, the figure handle is returned. """ mass_1 = xp.linspace(2, 100, 1000) mass_ratio = xp.linspace(0.1, 1, 500) mass_1_grid, mass_ratio_grid = xp.meshgrid(mass_1, mass_ratio) if not isinstance(results, list): result = [results] if observed: # vt_evaluator = load_vt(None) # vt_evaluator # TODO: make this usable... raise NotImplementedError( "Observation weighted spectrum plots not yet supported." ) fig, axs = plt.subplots(2, 1, figsize=(12, 8)) peak_1 = 0 peak_2 = 0 for result in results: filename = f"{result.outdir}/{result.label}_mass_data.h5" if os.path.isfile(filename): _data = _load_samples(filename) lines = _data["lines"] ppd = _data["ppd"] injected = _data.get("injected", None) else: data = dict( mass_1=mass_1_grid, mass_ratio=mass_ratio_grid, mass_2=mass_1_grid * mass_ratio_grid, ) lines = dict(mass_1=list(), mass_ratio=list()) ppd = xp.zeros_like(data["mass_1"]) if len(result.posterior) > MAX_SAMPLES: samples = result.posterior.sample(MAX_SAMPLES) else: samples = result.posterior if model := result.meta_data["models"].get("mass", None): model = Model([_load_model(model, args)]) elif args.mass_model is not None: model = Model([_load_model(args.mass_model, args)]) elif "mpp_1" in samples.keys(): model = Model([MultiPeakSmoothedMassDistribution()]) if "delta_m" not in samples: samples["delta_m"] = 0 elif "alpha_2" in samples.keys(): if "mpp" in samples.keys(): model = Model([BrokenPowerLawPeakSmoothedMassDistribution()]) else: model = Model([BrokenPowerLawSmoothedMassDistribution()]) if "delta_m" not in samples: samples["delta_m"] = 0 elif "mpp" in samples.keys(): model = Model([SinglePeakSmoothedMassDistribution()]) if "delta_m" not in samples: samples["delta_m"] = 0 elif "alpha" in samples.keys(): model = Model([power_law_primary_mass_ratio]) for ii in tqdm(range(len(samples))): parameters = dict(samples.iloc[ii]) model.parameters.update(parameters) prob = model.prob(data) if rate: if "rate" not in parameters: rate = False else: prob *= parameters["rate"] ppd += prob mass_1_prob = xp.trapz(prob, mass_ratio, axis=0) mass_ratio_prob = xp.trapz(prob, mass_1, axis=-1) lines["mass_1"].append(mass_1_prob) lines["mass_ratio"].append(mass_ratio_prob) for key in lines: lines[key] = np.vstack([to_numpy(line) for line in lines[key]]) ppd /= len(samples) ppd = to_numpy(ppd) if result.injection_parameters is not None and not rate: model.parameters.update(result.injection_parameters) injected = to_numpy(model.prob(data)) else: injected = None _dump_samples(filename, data=dict(lines=lines, ppd=ppd, injected=injected)) mass_1 = to_numpy(mass_1) mass_ratio = to_numpy(mass_ratio) mass_1_ppd = np.trapz(ppd, mass_ratio, axis=0) mass_ratio_ppd = np.trapz(ppd, mass_1, axis=-1) label = " ".join(result.label.split("_")).title() axs[0].semilogy(mass_1, mass_1_ppd, label=label) axs[0].fill_between( mass_1, np.percentile(lines["mass_1"], args.lower_limit, axis=0), np.percentile(lines["mass_1"], args.upper_limit, axis=0), alpha=0.5, ) _peak_1 = max(np.percentile(lines["mass_1"], args.upper_limit, axis=0)) peak_1 = max(peak_1, _peak_1) axs[1].semilogy(mass_ratio, mass_ratio_ppd) axs[1].fill_between( mass_ratio, np.percentile(lines["mass_ratio"], args.lower_limit, axis=0), np.percentile(lines["mass_ratio"], args.upper_limit, axis=0), alpha=0.5, ) _peak_2 = max(np.percentile(lines["mass_ratio"], args.upper_limit, axis=0)) peak_2 = max(peak_2, _peak_2) if injected is not None: injected_mass_1 = np.trapz(injected, mass_ratio, axis=0) injected_mass_ratio = np.trapz(injected, mass_1, axis=-1) axs[0].plot( mass_1, injected_mass_1, color="k", label="True", linestyle="--" ) axs[1].plot(mass_ratio, injected_mass_ratio, color="k", linestyle="--") axs[0].set_xlim(2, 100) axs[0].set_ylim(peak_1 / 100000, peak_1 * 1.1) axs[0].set_xlabel("$m_{1}$ [$M_{\\odot}$]") axs[0].legend(bbox_to_anchor=(0.5, 1.15), loc="upper center") if rate: ylabel = "$\\frac{d\\mathcal{R}}{dm_{1}}$ [Gpc$^{-3}$yr$^{-1}M_{\\odot}^{-1}$]" else: ylabel = "$p(m_{1})$ [$M_{\\odot}^{-1}$]" axs[0].set_ylabel(ylabel) axs[1].set_xlim(0.1, 1) axs[1].set_ylim(peak_2 / 10000, peak_2 * 1.1) axs[1].set_xlabel("$q$") if rate: ylabel = "$\\frac{d\\mathcal{R}}{dq}$ [Gpc$^{-3}$yr$^{-1}$]" else: ylabel = "$p(q)$" axs[1].set_ylabel(ylabel) if len(results) == 1: file_name = f"{result.outdir}/{result.label}_mass_spectrum.pdf" else: file_name = f"{result.outdir}/combined_mass_spectrum.pdf" plt.tight_layout() if save: plt.savefig(file_name, format="pdf", dpi=600, bbox_inches="tight") plt.close() return ppd else: return fig
[docs] def chi_eff_chi_p_plot(results, args, rate=False, observed=False, save=True): """ Make the posterior chi_eff chi_p plot given either one or multiple result objects. Parameters ---------- results: [list, `bilby.core.result.Result`] `Bilby` result(s) to make the spectra from. args: ArgumentParser The arguments describing the model. rate: bool Whether to scale the spectra by the inferred rate. observed: bool Whether to correct for selection effects. Not currently implemented. save: bool Whether to save the result to file. Returns ------- [dict, `matplotlib.pyplot.Figure`] If `save` the data behind the plot is returned as a dictionary. Else, the figure handle is returned. """ chi_eff = xp.linspace(-1, 1, 1000) chi_p = xp.linspace(0, 1, 500) chi_eff_grid, chi_p_grid = xp.meshgrid(chi_eff, chi_p) if not isinstance(results, list): result = [results] if observed: # vt_evaluator = load_vt(None) # vt_evaluator # TODO: make this usable... raise NotImplementedError( "Observation weighted spectrum plots not yet supported." ) fig, axs = plt.subplots(2, 1, figsize=(12, 8)) for result in results: filename = f"{result.outdir}/{result.label}_spin_data.h5" if os.path.isfile(filename): _data = _load_samples(filename) lines = _data["lines"] ppd = _data["ppd"] injected = _data.get("injected", None) else: data = dict( chi_eff=chi_eff_grid, chi_p=chi_p_grid, ) lines = dict(chi_eff=list(), chi_p=list()) ppd = xp.zeros_like(data["chi_eff"]) if len(result.posterior) > MAX_SAMPLES: samples = result.posterior.sample(MAX_SAMPLES) else: samples = result.posterior try: try: model = result.meta_data["models"]["spin"] except KeyError: model = result.meta_data["models"]["effective_spin"] except KeyError: raise KeyError("No chi_eff chi_p spin model found in result.") model = Model([_load_model(model, args)]) for ii in tqdm(range(len(samples))): parameters = dict(samples.iloc[ii]) model.parameters.update(parameters) prob = model.prob(data) if rate: if "rate" not in parameters: rate = False else: prob *= parameters["rate"] ppd += prob chi_eff_prob = xp.trapz(prob, chi_p, axis=0) chi_p_prob = xp.trapz(prob, chi_eff, axis=-1) lines["chi_eff"].append(chi_eff_prob) lines["chi_p"].append(chi_p_prob) for key in lines: lines[key] = np.vstack([to_numpy(line) for line in lines[key]]) ppd /= len(samples) ppd = to_numpy(ppd) if result.injection_parameters is not None and not rate: model.parameters.update(result.injection_parameters) injected = to_numpy(model.prob(data)) else: injected = None _dump_samples(filename, data=dict(lines=lines, ppd=ppd, injected=injected)) chi_eff = to_numpy(chi_eff) chi_p = to_numpy(chi_p) chi_eff_ppd = np.trapz(ppd, chi_p, axis=0) chi_p_ppd = np.trapz(ppd, chi_eff, axis=1) label = " ".join(result.label.split("_")).title() axs[0].plot(chi_eff, chi_eff_ppd, label=label) axs[0].fill_between( chi_eff, np.percentile(lines["chi_eff"], args.lower_limit, axis=0), np.percentile(lines["chi_eff"], args.upper_limit, axis=0), alpha=0.5, ) axs[1].plot(chi_p, chi_p_ppd) axs[1].fill_between( chi_p, np.percentile(lines["chi_p"], args.lower_limit, axis=0), np.percentile(lines["chi_p"], args.upper_limit, axis=0), alpha=0.5, ) if injected is not None: injected_chi_p = np.trapz(injected, chi_p, axis=0) injected_chi_eff = np.trapz(injected, chi_eff, axis=-1) axs[0].plot( chi_eff, injected_chi_eff, color="k", label="True", linestyle="--" ) axs[1].plot(chi_p, injected_chi_p, color="k", linestyle="--") axs[0].set_xlim(-1, 1) axs[0].set_ylim(0) axs[0].set_xlabel("$\\chi_{eff}$") axs[0].legend(loc="upper center") if rate: ylabel = "$\\frac{d\\mathcal{R}}{d\\chi_{eff}}$ [Gpc$^{-3}$yr$^{-1}$]" else: ylabel = "$p(\\chi_{eff})$]" axs[0].set_ylabel(ylabel) axs[1].set_xlim(0.0, 1) axs[1].set_ylim(0) axs[1].set_xlabel("$\\chi_p$") if rate: ylabel = "$\\frac{d\\mathcal{R}}{d\\chi_p}$ [Gpc$^{-3}$yr$^{-1}$]" else: ylabel = "$p(\\chi_p)$" axs[1].set_ylabel(ylabel) if len(results) == 1: file_name = f"{result.outdir}/{result.label}_spin_spectrum.pdf" else: file_name = f"{result.outdir}/combined_spin_spectrum.pdf" plt.tight_layout() if save: plt.savefig(file_name, format="pdf", dpi=600, bbox_inches="tight") plt.close() return ppd else: return fig
[docs] def spin_magnitude_spectrum_plot(results, args, rate=False, save=True): """ Make the posterior spin magnitude plot given either one or multiple result objects. Parameters ---------- results: [list, `bilby.core.result.Result`] `Bilby` result(s) to make the spectra from. args: ArgumentParser The arguments describing the model. rate: bool Whether to scale the spectra by the inferred rate. save: bool Whether to save the result to file. Returns ------- [dict, `matplotlib.pyplot.Figure`] If `save` the data behind the plot is returned as a dictionary. Else, the figure handle is returned. """ mags = xp.linspace(0, 1, 1000) a_1, a_2 = xp.meshgrid(mags, mags) fig, axs = plt.subplots(1, 2, figsize=(12, 4)) for result in results: filename = f"{result.outdir}/{result.label}_magnitude_data.h5" if os.path.isfile(filename): _data = _load_samples(filename) lines = _data["lines"] ppd = _data["ppd"] injected = _data.get("injected", None) else: if model := result.meta_data["models"].get("magnitude", None): model = Model([_load_model(model, args)]) elif args.magnitude_model is not None: model = Model([_load_model(args.magnitude_model, args=args)]) else: model = Model([independent_spin_magnitude_beta]) for key in ["amax", "mu_chi", "sigma_chi", "alpha_chi", "beta_chi"]: if key in result.posterior and f"{key}_1" not in result.posterior: result.posterior[f"{key}_1"] = result.posterior[key] result.posterior[f"{key}_2"] = result.posterior[key] del result.posterior[key] result.posterior = convert_to_beta_parameters(result.posterior)[0] data = dict(a_1=a_1, a_2=a_2) lines = dict(a_1=list(), a_2=list()) ppd = xp.zeros_like(data["a_1"]) if len(result.posterior) > MAX_SAMPLES: samples = result.posterior.sample(MAX_SAMPLES) else: samples = result.posterior for ii in tqdm(range(len(samples))): parameters = dict(samples.iloc[ii]) model.parameters.update(parameters) prob = model.prob(data) if rate: if "rate" not in parameters: rate = False else: prob *= parameters["rate"] ppd += prob a_1_prob = xp.trapz(prob, mags, axis=0) a_2_prob = xp.trapz(prob, mags, axis=-1) lines["a_1"].append(a_1_prob) lines["a_2"].append(a_2_prob) for key in lines: lines[key] = np.vstack([to_numpy(line) for line in lines[key]]) ppd /= len(samples) ppd = to_numpy(ppd) if result.injection_parameters is not None and not rate: parameters = result.injection_parameters.copy() for key in ["amax", "mu_chi", "sigma_chi", "alpha_chi", "beta_chi"]: if key in parameters and f"{key}_1" not in parameters: parameters[f"{key}_1"] = parameters[key] parameters[f"{key}_2"] = parameters[key] del parameters[key] parameters = convert_to_beta_parameters(parameters)[0] model.parameters.update(parameters) injected = to_numpy(model.prob(data)) else: injected = None _dump_samples(filename, data=dict(lines=lines, ppd=ppd)) mags = to_numpy(mags) a_1_ppd = np.trapz(ppd, mags, axis=0) a_2_ppd = np.trapz(ppd, mags, axis=1) label = " ".join(result.label.split("_")).title() axs[0].plot(mags, a_1_ppd, label=label) axs[0].fill_between( mags, np.percentile(lines["a_1"], args.lower_limit, axis=0), np.percentile(lines["a_1"], args.upper_limit, axis=0), alpha=0.5, ) axs[1].plot(mags, a_2_ppd) axs[1].fill_between( mags, np.percentile(lines["a_2"], args.lower_limit, axis=0), np.percentile(lines["a_2"], args.upper_limit, axis=0), alpha=0.5, ) if injected is not None and not rate: a_1_injected = np.trapz(injected, mags, axis=0) a_2_injected = np.trapz(injected, mags, axis=1) axs[0].plot(mags, a_1_injected, color="k", label="True", linestyle="--") axs[1].plot(mags, a_2_injected, color="k", linestyle="--") for ii in [1, 2]: axs[ii - 1].set_xlim(0, 1) axs[ii - 1].set_ylim(0) axs[ii - 1].set_xlabel(f"$a_{ii}$") if rate: ylabel = f"$\\frac{{dN}}{{da_{ii}}}$" else: ylabel = f"$p(a_{ii})$" axs[ii - 1].set_ylabel(ylabel) axs[0].legend(bbox_to_anchor=(0.5, 1.15), loc="upper center") if len(results) == 1: file_name = f"{result.outdir}/{result.label}_magnitude_spectrum.pdf" else: file_name = f"{result.outdir}/comparison_magnitude_spectrum.pdf" if save: plt.savefig(file_name, format="pdf", dpi=600, bbox_inches="tight") plt.close() return ppd else: return fig
[docs] def spin_orientation_spectrum_plot(results, args, rate=False, save=True): """ Make the posterior spin orientation plot given either one or multiple result objects. Parameters ---------- results: [list, `bilby.core.result.Result`] `Bilby` result(s) to make the spectra from. args: ArgumentParser The arguments describing the model. rate: bool Whether to scale the spectra by the inferred rate. save: bool Whether to save the result to file. Returns ------- [dict, `matplotlib.pyplot.Figure`] If `save` the data behind the plot is returned as a dictionary. Else, the figure handle is returned. """ cos_tilts = xp.linspace(-1, 1, 1000) cos_tilt_1, cos_tilt_2 = xp.meshgrid(cos_tilts, cos_tilts) fig, axs = plt.subplots(1, 2, figsize=(12, 4)) for result in results: filename = f"{result.outdir}/{result.label}_orientation_data.h5" if os.path.isfile(filename): _data = _load_samples(filename) lines = _data["lines"] ppd = _data["ppd"] injected = _data.get("injected", None) else: if model := result.meta_data["models"].get("tilt", None): model = Model([_load_model(model, args)]) elif args.tilt_model is not None: model = Model([_load_model(args.tilt_model, args=args)]) else: model = Model([independent_spin_orientation_gaussian_isotropic]) if "sigma_1" not in result.posterior: result.posterior["sigma_1"] = result.posterior["sigma_spin"] result.posterior["sigma_2"] = result.posterior["sigma_spin"] data = dict(cos_tilt_1=cos_tilt_1, cos_tilt_2=cos_tilt_2) lines = dict(cos_tilt_1=list(), cos_tilt_2=list()) ppd = xp.zeros_like(data["cos_tilt_1"]) if len(result.posterior) > MAX_SAMPLES: samples = result.posterior.sample(MAX_SAMPLES) else: samples = result.posterior for ii in tqdm(range(len(samples))): parameters = dict(samples.iloc[ii]) model.parameters.update(parameters) prob = model.prob(data) if rate: if "rate" not in parameters: rate = False else: prob *= parameters["rate"] ppd += prob cos_tilt_1_prob = xp.trapz(prob, cos_tilts, axis=0) cos_tilt_2_prob = xp.trapz(prob, cos_tilts, axis=1) lines["cos_tilt_1"].append(cos_tilt_1_prob) lines["cos_tilt_2"].append(cos_tilt_2_prob) for key in lines: lines[key] = np.vstack([to_numpy(line) for line in lines[key]]) ppd /= len(samples) ppd = to_numpy(ppd) if result.injection_parameters is not None and not rate: parameters = result.injection_parameters if "sigma_1" not in parameters: parameters["sigma_1"] = parameters["sigma_spin"] parameters["sigma_2"] = parameters["sigma_spin"] model.parameters.update(parameters) injected = to_numpy(model.prob(data)) else: injected = None _dump_samples(filename, data=dict(lines=lines, ppd=ppd)) cos_tilts = to_numpy(cos_tilts) cos_tilt_1_ppd = np.trapz(ppd, cos_tilts, axis=0) cos_tilt_2_ppd = np.trapz(ppd, cos_tilts, axis=1) label = " ".join(result.label.split("_")).title() axs[0].plot(cos_tilts, cos_tilt_1_ppd, label=label) axs[0].fill_between( cos_tilts, np.percentile(lines["cos_tilt_1"], args.lower_limit, axis=0), np.percentile(lines["cos_tilt_1"], args.upper_limit, axis=0), alpha=0.5, ) axs[1].plot(cos_tilts, cos_tilt_2_ppd) axs[1].fill_between( cos_tilts, np.percentile(lines["cos_tilt_2"], args.lower_limit, axis=0), np.percentile(lines["cos_tilt_2"], args.upper_limit, axis=0), alpha=0.5, ) if injected is not None and not rate: t_1_injected = np.trapz(injected, cos_tilts, axis=0) t_2_injected = np.trapz(injected, cos_tilts, axis=1) axs[0].plot( cos_tilts, t_1_injected, color="k", label="True", linestyle="--" ) axs[1].plot(cos_tilts, t_2_injected, color="k", linestyle="--") if rate: ylabel = "$\\frac{{d\\mathcal{{R}}}}{{d\\cos t_{}}}$ [Gpc$^{{-3}}$yr$^{{-1}}$]" else: ylabel = "$p(\\cos t_{})$" for ii in [1, 2]: axs[ii - 1].set_xlim(-1, 1) axs[ii - 1].set_ylim(0) axs[ii - 1].set_xlabel(f"$\\cos t_{ii}$") axs[ii - 1].set_ylabel(ylabel.format(str(ii))) axs[0].legend(bbox_to_anchor=(0.5, 1.15), loc="upper center") if len(results) == 1: file_name = f"{result.outdir}/{result.label}_orientation_spectrum.pdf" else: file_name = f"{result.outdir}/comparison_orientation_spectrum.pdf" if save: plt.savefig(file_name, format="pdf", dpi=600, bbox_inches="tight") plt.close() return ppd else: return fig
[docs] def redshift_spectrum_plot(results, args, rate=True, save=True): """ Make the posterior redshift plot given either one or multiple result objects. Parameters ---------- results: [list, `bilby.core.result.Result`] `Bilby` result(s) to make the spectra from. args: ArgumentParser The arguments describing the model. rate: bool Whether to scale the spectra by the inferred rate. save: bool Whether to save the result to file. Returns ------- [dict, `matplotlib.pyplot.Figure`] If `save` the data behind the plot is returned as a dictionary. Else, the figure handle is returned. """ fig, ax = plt.subplots(1, 1, figsize=(6, 4)) for result in results: if model := result.meta_data["models"].get("redshift", None): model = _load_model(model, args) elif args.redshift_model is not None: model = _load_model(args.redshift_model, args=args) elif "lamb" in result.posterior: model = PowerLawRedshift(z_max=2.3) elif "gamma" in result.posterior: model = MadauDickinsonRedshift(z_max=args.upper_limit) else: raise KeyError("Cannot find redshift parameters.") redshifts = model.zs _np_redshifts = to_numpy(redshifts) filename = f"{result.outdir}/{result.label}_redshift_data.h5" if os.path.exists(filename): _data = _load_samples(filename) lines = _data["lines"] ppd = _data["ppd"] else: ppd = xp.zeros_like(redshifts) lines = dict(redshift=list()) if len(result.posterior) > MAX_SAMPLES: samples = result.posterior.sample(MAX_SAMPLES) else: samples = result.posterior for ii in tqdm(range(len(samples))): parameters = dict(samples.iloc[ii]) prob = model.psi_of_z( redshift=redshifts, **{key: parameters[key] for key in model.variable_names}, ) if rate: if "surveyed_hypervolume" not in parameters: rate = False else: prob *= parameters["rate"] ppd += prob lines["redshift"].append(to_numpy(prob)) ppd /= len(samples) ppd = to_numpy(ppd) _dump_samples(filename, data=dict(lines=lines, ppd=ppd)) label = " ".join(result.label.split("_")).title() ax.plot(_np_redshifts, ppd, label=label) ax.fill_between( _np_redshifts, np.percentile(lines["redshift"], args.lower_limit, axis=0), np.percentile(lines["redshift"], args.upper_limit, axis=0), alpha=0.5, ) if rate: ylabel = "$\\mathcal{R}(z)$ [Gpc$^{-3}$yr$^{-1}$]" else: ylabel = "$\\frac{R(z)}{R(z=0)}$" ax.set_xlim(0, 2.3) ax.set_yscale("log") ax.set_xlabel("$z$") ax.set_ylabel(ylabel) ax.legend(bbox_to_anchor=(0.5, 1.15), loc="upper center") if len(results) == 1: file_name = f"{result.outdir}/{result.label}_redshift_spectrum.pdf" else: file_name = f"{result.outdir}/comparison_redshift_spectrum.pdf" if save: plt.savefig(file_name, format="pdf", dpi=600, bbox_inches="tight") plt.close() return ppd else: return fig
[docs] def reweighted_comparison(data, outdir="outdir"): """ Plot a comparison of fiducial and population-informed single-event posteriors. The makes an interactive `html` figure with `plotly`. Parameters ---------- data: dict Dictionary containing `original` and `reweighted` posteriors. outdir: str The output directory to save the file to. """ import plotly.graph_objects as go from plotly.offline import plot from plotly.subplots import make_subplots parameter_names = list(data["original"].keys()) plotting_parameters = list() for key in ["original", "reweighted"]: if "mass_1" in parameter_names: plotting_parameters.append("mass_1") if "mass_ratio" in parameter_names and "mass_2" not in parameter_names: data[key]["mass_2"] = data[key]["mass_1"] * data[key]["mass_ratio"] elif "mass_ratio" not in parameter_names and "mass_2" in parameter_names: data[key]["mass_ratio"] = data[key]["mass_2"] / data[key]["mass_1"] if all( [ _key in data[key] for _key in ["a_1", "a_2", "cos_tilt_1", "cos_tilt_2", "mass_ratio"] ] ): data[key]["chi_eff"] = ( data[key]["a_1"] * data[key]["cos_tilt_1"] + data[key]["mass_ratio"] * data[key]["a_2"] * data[key]["cos_tilt_2"] ) / (1 + data[key]["mass_ratio"]) in_plane_1 = data[key]["a_1"] * (1 - data[key]["cos_tilt_1"] ** 2) ** 0.5 in_plane_2 = data[key]["a_2"] * (1 - data[key]["cos_tilt_2"] ** 2) ** 0.5 data[key]["chi_p"] = np.maximum( in_plane_1, data[key]["mass_ratio"] * (3 + 4 * data[key]["mass_ratio"]) / (4 + 3 * data[key]["mass_ratio"]) * in_plane_2, ) if "chi_eff" in data["original"]: plotting_parameters.append("chi_eff") plotting_parameters.append("chi_p") plotting_parameters.append("mass_ratio") plotting_parameters.append("mass_2") if "names" not in data: names = [str(ii) for ii in range(data["original"][parameter_names[0]].shape[0])] else: names = data["names"] fig = make_subplots( rows=len(parameter_names), cols=1, row_heights=[1 / len(parameter_names)] * len(parameter_names), ) fig.update_layout( template="plotly_white", font=dict(family="Computer Modern"), xaxis=dict(showgrid=False), yaxis=dict(showgrid=False), ) kinds = list() parameters = list() legends = list() for jj, parameter in enumerate(plotting_parameters): for ii, event in enumerate(names): fig.add_trace( go.Histogram( x=to_numpy(data["original"][parameter][ii])[:1000], histnorm="probability density", marker_color="Blue", legendgroup=event, showlegend=False, name=event, hovertext=event, ), row=jj + 1, col=1, ) kinds.append("original") parameters.append(parameter) if jj == 0: legends.append(True) else: legends.append(False) fig.add_trace( go.Histogram( x=to_numpy(data["reweighted"][parameter][ii])[:1000], histnorm="probability density", marker_color="Red", legendgroup=event, showlegend=True and jj == 0, name=event, hovertext=event, ), row=jj + 1, col=1, ) kinds.append("resampled") parameters.append(parameter) if jj == 0: legends.append(True) else: legends.append(False) fig.update_xaxes(title_text=" ".join(parameter.split("_")), row=jj + 1, col=1) fig.update_layout(barmode="overlay") fig.update_traces(opacity=0.3) updatemenus = [ go.layout.Updatemenu( type="buttons", direction="right", active=0, x=0.57, y=1.2, buttons=list( [ dict( label="All", method="update", args=[ { "visible": [True] * len(kinds), "showlegend": [ kind == "original" and legend for kind, legend in zip(kinds, legends) ], } ], ), dict( label="Original", method="update", args=[ { "visible": [kind == "original" for kind in kinds], "showlegend": [ kind == "original" and legend for kind, legend in zip(kinds, legends) ], } ], ), dict( label="Resampled", method="update", args=[ { "visible": [kind == "resampled" for kind in kinds], "showlegend": [ kind == "original" and legend for kind, legend in zip(kinds, legends) ], } ], ), ] ), ) ] fig.update_layout(updatemenus=updatemenus) fig.update_layout(height=250 * len(plotting_parameters), width=1000) filename = f"{outdir}/{data['label']}_samples.html" plot(fig, filename=filename, include_mathjax="cdn", auto_open=False)
PLOT_MAP = dict( mass=mass_spectrum_plot, magnitude=spin_magnitude_spectrum_plot, orientation=spin_orientation_spectrum_plot, redshift=redshift_spectrum_plot, corner=corner_plots, chi_eff_chi_p=chi_eff_chi_p_plot, ) def _safe_plot(result, args, key): _set_matplotlib() try: PLOT_MAP[key](result, args, rate=True) except Exception as e: if "TeX" in e.args[0]: logger.warning( f"Failed to create plot for {key} due to missing TeX. " "Disabling TeX." ) _unset_matplotlib() PLOT_MAP[key](result, args, rate=True) else: logger.warning(f"Failed to create {key} plot with message {e}") _unset_matplotlib()
[docs] def main(): parser = create_parser() args, _ = parser.parse_known_args() set_backend(args.backend) results = [read_in_result(res) for res in args.result_file] if args.labels is not None: for label, result in zip(args.labels, results): result.label = label if args.run_dir is not None: for result in results: result.outdir = os.path.join(args.run_dir, "result") for key in [ "mass", "magnitude", "orientation", "redshift", "corner", "chi_eff_chi_p", ]: if getattr(args, key): logger.info(f"Making {key} plot") _safe_plot(results, args, key) if args.samples is not None and os.path.exists(args.samples): samples = _load_samples(args.samples) reweighted_comparison(data=samples, outdir=os.path.join(args.run_dir, "result")) elif args.samples is not None: logger.info( f"Cannot find samples file {args.samples}. \ Skipping reweighted comparison plot." )
if __name__ == "__main__": main()